If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+82Y
We move all terms to the left:
-(-16Y^2+82Y)=0
We get rid of parentheses
16Y^2-82Y=0
a = 16; b = -82; c = 0;
Δ = b2-4ac
Δ = -822-4·16·0
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-82)-82}{2*16}=\frac{0}{32} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-82)+82}{2*16}=\frac{164}{32} =5+1/8 $
| 70+75+x+44=180 | | 52+x+88+48=180 | | x+61+31=180 | | 59+x+47+80=180 | | 52+x+87+53=180 | | 68+75+18x+1=180 | | 44=4j-28 | | 5x-6=8x+4 | | x/8=36 | | 4x=54.8 | | x*0.75=2 | | n-2=4/5 | | 82+x=87 | | a/25=-18 | | 4.1g+8=2.1g+20 | | b-42=-48 | | n-(-44)=-49 | | -8-n=4 | | 63=82+a | | p/62=83 | | -25.4n=-144.78 | | -29.9=-13.4+m | | X2+3y=18 | | n/11.2=-9.3 | | 26.86=15.8n | | -10-7x+3x=-38 | | 4/3b=4/4 | | 4^2x+1=65 | | N+5=6x(12-3) | | 9x=45.x=5 | | 6y+29=-35 | | -3x-7(2)=-20 |